Skip to content

Phoenix-Shen/DSEN2_CR_PYTORCH

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSEN2_CR_PYTORCH

2023.12.26: 似乎原作者已经上传了自己的代码,可以点击此链接查看
2023.12.26: It seems that the original authors have uploaded their own code, click on this link to view.

DSen2_CR神经网络的pytorch版本
Pytorch version of the DSen2_CR neural network.


数据集下载地址 / Dataset Download Links


数据组织方式 / Data Organization

请按照以下方式组织数据:
Please organize the data as follows:

dataset_name
├── ROIs1158_spring
│ ├── s1_*
│ ├── s2_*
│ └── s2_cloudy_*
├── ROIs1868_summer
│ ├── s1_*
│ ├── s2_*
│ └── s2_cloudy_*
├── ROIs1970_fall
│ ├── s1_*
│ ├── s2_*
│ └── s2_cloudy_*
└── ROIs2017_winter
  ├── s1_*
  ├── s2_*
  └── s2_cloudy_*

使用说明 / Usage Instructions

1. Visdom可视化 / Visdom Visualization

  • 可以使用Visdom进行可视化。
    You can use Visdom for visualization.
  • 打开CMD,输入以下命令以下载Visdom:
    Open CMD and enter the following command to install Visdom:
    pip install visdom
  • 启动Visdom服务器: Start the Visdom server:
    python -m visdom.server
  • 在浏览器中查看训练图片和损失。 View training images and losses in your browser.
  • 如果不想要这个功能,请在train.py中删除包含"vis"的代码。 If you don’t want this feature, delete the code containing "vis" in train.py.

2. 网络设置 / Network Configuration

  • 在config.py中可以调整网络设置。 You can adjust the network settings in config.py.

3. 训练与预测 / Training and Prediction

  • 使用以下命令训练网络: Use the following command to train the network
    python train.py
  • 使用以下命令进行预测: Use the following command for prediction:
    python predict.py

3. 注意事项 / Notes

  • 确保数据集已正确组织并放置在dataset_name目录下。 Ensure the dataset is organized correctly and placed in the dataset_name directory.
  • 训练和预测过程中,请根据实际情况调整参数。 Adjust parameters as needed during training and prediction.

About

DSen2_CR神经网络的pytorch版本

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages