-
Notifications
You must be signed in to change notification settings - Fork 32
Open
Labels
bugSomething isn't workingSomething isn't workinggood first issueGood for newcomersGood for newcomers
Description
It seems dpctl.tensor.tan returns result which differs with numpy and Intel MKL:
import dpnp, numpy, dpctl, dpctl.tensor as dpt
a = numpy.array([11], dtype='F')
numpy.tan(a)
# Out: array([-225.95084+0.j], dtype=complex64)
ia = dpnp.array(a, device='cpu')
dpnp.tan(ia)
# array([-225.95085+0.j], dtype=complex64) tan() from Intel MKL is used
na = dpt.asarray(a, device='cpu')
dpt.tan(da)
# Out: usm_ndarray([-225.68439+0.j], dtype=complex64)
na = dpt.asarray(a, device='gpu')
dpt.tan(na)
# Out: usm_ndarray([-225.68439+0.j], dtype=complex64)
# casting to complex128 resolve the issue:
na = dpt.asarray(a, device='cpu', dtype='D')
dpt.tan(na)
# Out: usm_ndarray([-225.95084645+0.j])Is the behavior expected? Or is there something which needs to be fixed in dpctl?
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workinggood first issueGood for newcomersGood for newcomers